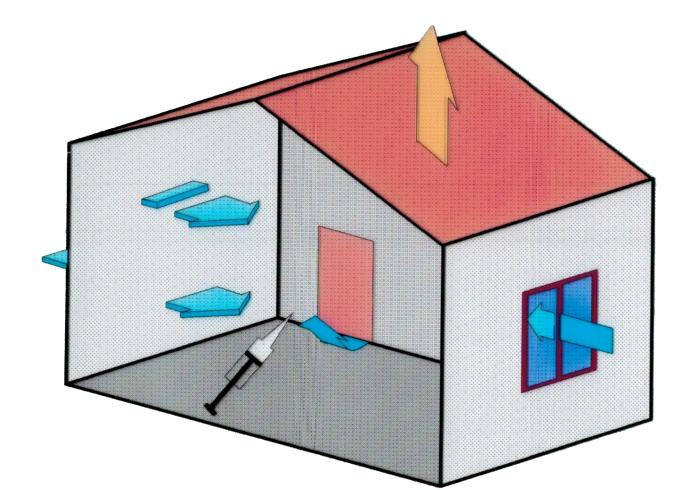


20. WaBoLu-Innenraumtage 20.-22. Mai 2019 Praxisgerechte Verfahren zur Luftwechselmessung


Dr.-Ing. Willigert Raatschen, TracerTech GmbH, Immenstaad a. B.

Inhalt

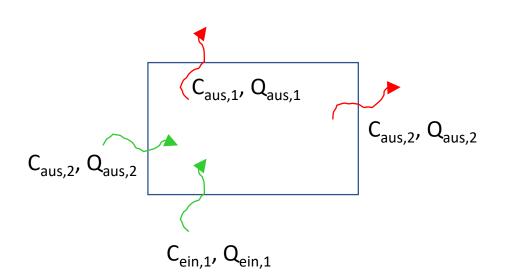
- 1. Methodik zur Messung der LWZ
- 2. Luftwechsel oder lokales Alter der Luft
- 3. Praxisrelevante Vorteile
- 4. Umweltaspekte

- Einmalige Tracergasinjektion
- Messung des Konzentrationsabfalls

$$c(t) = c^0 \cdot e^{-n \cdot t}$$

- Injektion von einer 60ml Spritze reichen für Raumvolumen von 3.000m³
- Tracergasanalyse mit Gaschromatograph Autotrac 101
- 5-10ml Probenvolumen
- Konzentrationsbereich 50 ppt bis 100 ppb

$$c(t) = c^0 \cdot e^{-n \cdot t}$$



Vorgehensweise:

- Tracergas nicht nur am Anfang, sondern während der ganzen Messzeit vollständig durchmischt zu halten
- Nach ASTM-Norm muss Durchmischung vorher und nachher nachgewiesen werden

Hintergrund:

 Die Massenbilanz setzt voraus, dass die Raumluft vollständig durchmischt ist

Aus
$$V_R \cdot \frac{dc}{dt} = \sum Q_{ein,i} \cdot c_{ein,i} - \sum Q_{aus,i} \cdot c_{aus,i}$$

wird nur
$$c(t) = c^0 \cdot e^{-n \cdot t}$$

wenn
$$c_{aus, i} = c$$

und
$$c_{ein, i} = 0$$

2. Auswertung Decay-Test

00 ===			SF6-Konzentrations	abfall		
c ₀						
.0		-				
			-	The same of the same of		
00:00	00:10	00:20	00:30	00:40	00:50	Zeit [h]

Nr.	Zeit	t_rel	Konzentration [ppb]	Bemerkung
1	12:51:55	00:10:55	17,00	keine
2	13:02:13	00:21:13	11,70	
3	13:11:15	00:30:15	8,22	
4	13:21:20	00:40:20	5,60	
5	13:31:08	00:50:08	3,98	

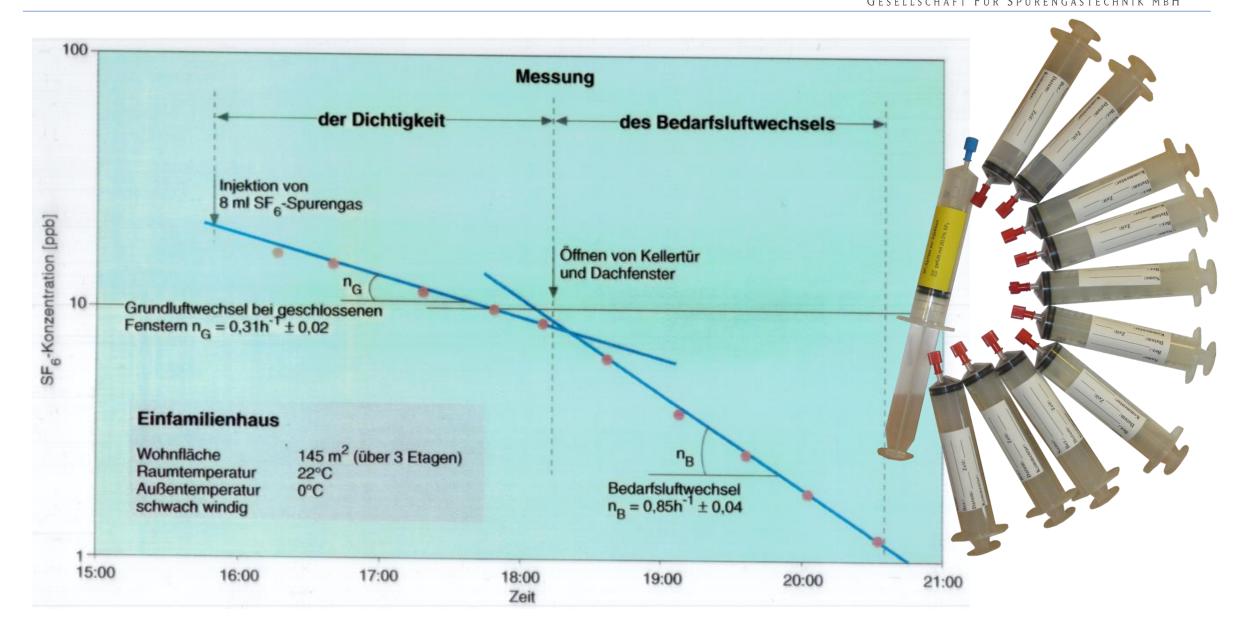
Meßergebnis:
Der Luftwechsel beträgt n= 2,24 h-1 +/- 0,01

Detaillierte Meßauswertung:

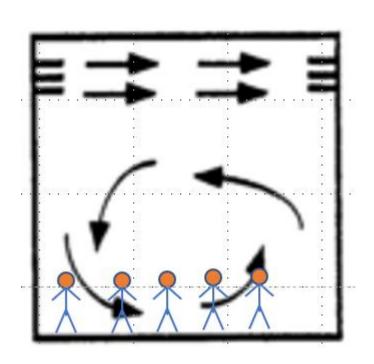
Qualität der Approximation R³ = 0,9997

berechnete Anfangskonzentration c(t=0) = 25,57 ppb

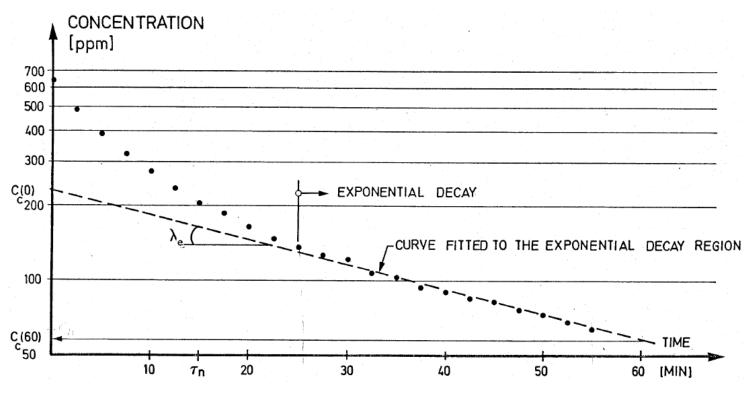
angegebenes Zonenvolumen V = 42 m³


berechnetes effektives Zonenvolumen Veff = 46 m³

% Abweichung (1-Veff/V)*100 = -9,0 %


 $Q = n \cdot V_R$ Das am LW beteiligte Raumvolumen ergibt sich zu

$$V_{R,eff} = \frac{V_{7}}{c_{0}}$$


2. LWM mit dem Kombi-Set

Konzept vom Alter der Luft

Ausgebildete Kurzschlussströmung in einer Produktionshalle

Sandberg: Nordtest-Project: 366-82 Part 2, Determination of Mean-Age of Air

$$\tau_p = \frac{1}{c_p^0} \cdot \int_{t=0}^{\infty} c_p(t) dt$$

3. Praxisrelevante Vorteile

Integrale Injektion mit Spritzen

- händisch
- mit Teleskopstange

Integrale oder lokale Probenahmen mit Spritzen

- händisch
- mit vorinstallierten Schläuchen in Deckennähe
- mit Teleskopstange

Wirtschaftlichkeit

- Keine Investition notwendig
- Geringe Kosten
- Sehr präzise Ergebnisse



Injektions- und Probenahmeeinrichtung

Decay-Methode

- Immer dann, wenn man während der Messzeit eine vollständige Durchmischung erreichen kann. Über lokale Messungen ist der Nachweis leicht zu erbringen
- Integral genommene Proben reduzieren die Unsicherheit bei nicht vollständiger Durchmischung
- Die Decay-Methode wird zu mehr als 95% aller Praxisfälle angewendet

Nachweis Fassadendichtigkeit VW Kundencenter, Wolfsburg L=142 m, B=92 m, H=19-22 m, V=65100 m³

Dichtigkeit von PkW während der Fahrt Dichtigkeit von Vitrinen

Indikatorgas	Hintergrund- volumengehalte	Nachweismethode	Messbereich	
	VolAnteile		VolAnteile	
Schwefelhexafluorid SF ₆	(0,85 – 1,5) · 10 ⁻¹²	Gaschromatograph mit Elektroneneinfangdetektor oder Massenspektrometer	5 · 10 ⁻¹² – 200 · 10 ⁻⁹	gasförm
		Infrarot-Gasanalysator	1 · 10 ⁻⁷ – 100 · 10 ⁻⁶	gasförm
		Photoakustikdetektor	5 · 10 ⁻⁹ *)	
Hexafluorbenzol C ₆ F ₆	< 1 · 10 ⁻¹²	Gaschromatograph mit Elektroneneinfangdetektor oder Massenspektrometer	50 · 10 ⁻¹² - 10 · 10 ⁻⁹	flüssig
Distickstoffmonoxid (Lachgas) N ₂ O **)	315 · 10 ⁻⁹	Infrarot-Gasanalysator Photoakustikdetektor	1 · 10 ⁻⁶ – 200 · 10 ⁻⁶ 50 · 10 ⁻⁹ *)	gasförm
Kohlendioxid CO ₂ ***)	360 · 10 ⁻⁶	Infrarot-Gasanalysator Photoakustikdetektor	1 · 10 ⁻⁶ – 5000 · 10 ⁻⁶ 3 · 10 ⁻⁶ *)	Sustain

^{*)} Der obere Messbereich ist abhängig von der Kalibration.

Auszug aus der VDI4300 Blatt 7

Perfluorocarbontracer

NULL

ECD-Gaschromatograph

5 • 10 - 12

flüssig

mig

mig

^{**)} Hinsichtlich des N2O Einsatzes sind die Wasserlöslichkeit und Adsorptionseffekte zu beachten.

^{***)}CO2 ist bedingt geeignet. Berücksichtigt werden müssen der unter Umständen schwankende Anteil in der Zu- bzw. Abluft, die Unwägbarkeit der personenbezogenen CO2-Abgabe sowie mögliche rauminterne Quellen. Wird CO2 als Indikatorgas verwendet, müssen die CO2-Umgebungsvolumengehalte von den gemessenen CO2-Volumengehalten subtrahiert werden.

Bewertung von Tracergasen bzgl. Umweltschädlichkeit

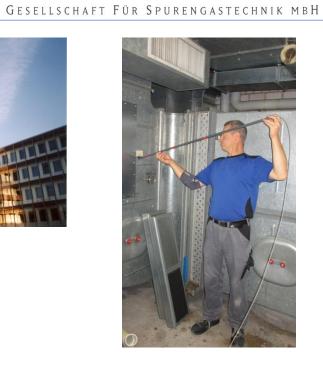
Beispiel: LWM in einem Raum von 90 m³ Raumvolumen

Tracergas	CO ₂	N ₂ O	SF ₆ _IR-opt.	SF ₆ _IR-PA	SF ₆ _GC
C_CO2_Umgebung [ppm]	450	0	0	0	0
C_max [ppm]	5.000	100	100	15	0,010
V_Tracer_injekt [I]	410	9,0	9,0	1,35	0,00090
m_Tracer_injekt [g]	739	16	54	8	0,00539
MAK-Wert [ppm]	5.000	100	1.000	1.000	1.000
untere Detektionsgrenze [ppm]	450	1	1,0	0,015	0,000010
GWP ₁₀₀	1	310	22.800	22.800	22.800
Gesamt GWP	739	5.037	1.229.178	184.377	123
GWP_CO2/GWP_Tracer	1	7	1.663	249	0,166
Faktor für Konzentrationsabfall	11	100	100	1.000	1.000

Vor- und Nachteile von SF₆

Vorteile SF₆ - Schwefelhexafluorid

- Nicht toxisch oder chemisch aktiv
- Keine signifikante Hintergrundkonzentration (1-3 ppt)
- Keine Adsorption an Oberflächen
- Keine Querempfindlichkeit bei der Analytik mit GC Analyse
- Nur sehr geringe Probemenge notwendig (5-10ml)
- Wegen extrem geringer Mengen sehr preiswert
- Trotz sehr hohem GWP-Wert die Umwelt wenig belastend


Nachteile SF₆

 Mit dem höchsten GWP-Wert von 22.800 gehört SF₆ zu den klimaschädlichsten Gasen überhaupt und trägt stark zur Erderwärmung bei

Vielen Dank für Ihre Aufmerksamkeit