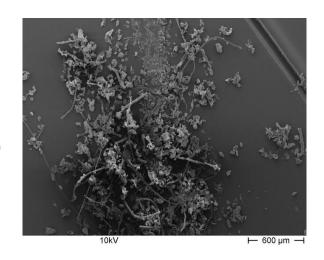
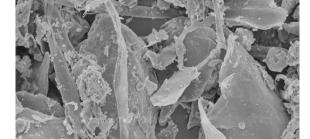

26. WaBoLu-Innenraumtage, 22.05.2019 Berlin

Kombination von GC- und LC-MS zur Analyse von Hausstäuben auf Weichmacher und Phosphate

Maria Hoppe, Ludwig Gruber


(Teil-)Vorhaben des GerES (2015-2017): Untersuchung von Hausstaub auf Phthalate, Ersatzstoffe für Phthalate und Flammschutzmittel sowie die Identifizierung neuerer Stoffe


Laufzeit 2015 – 2018

Zusammensetzung Hausstaub

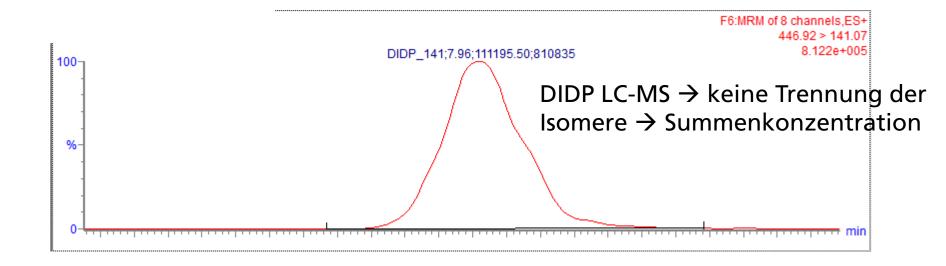
- Hautschuppen und Haare (menschliche, tierische)
- Pollen, Samenfasern
- Kleinstlebewesen, deren Kot und Überreste (Milben, Spinnen, Staubläuse, Silberfische usw.)
- Straßenabrieb
- Abrieb, Fasern und Fussel von Bedarfsgegenständen (z.B. Polymerteilchen)
- → Schadstoffe aus Bedarfsgegenständen (z.B. Weichmacher aus Bodenbelägen, Biozide aus Wandfarbe, Flammschutzmittel aus Elekrogeräten, Bestandteile von Haushaltsreinigungsmittel und Kosmetikprodukten)

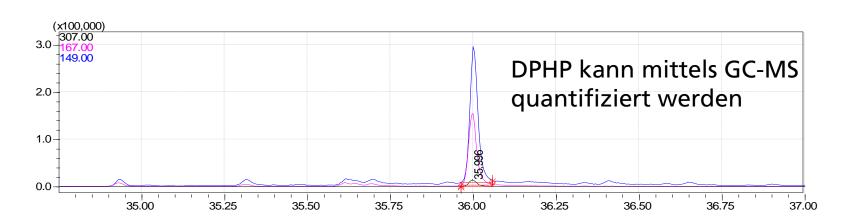
Analytenspektrum – Weichmacher

12 Phthalat-Weichmacher:	Dimethylphthalat (DMP)
	Diethylphthalat (DEP)
	n-Dibutylphthalat (DBP)
	Diisobutylphthalat (DiBP)
	Benzylbutylphthalat (BBP)
	Dicyclohexylphthalat (DcHP)
	Diheptyl- und Diisoheptylphthalat (DIHP)
	Di(2-ethylhexyl)phthalat (DEHP)
	Diisononylphthalat (DiNP)
	Diisodecylphthalat (DiDP)
	Di(2-propylheptyl)phthalat (DPHP)
	Diisoundecylphthalat (DiUP)
9 Alternativ-Weichmacher:	Dibutyladipat (DBA)
	Di(2-ethylhexyl)adipat (DEHA)
	Diisononyladipat (DINA)
	Di(2-ethylhexyl)azelat (DEHAz)
	Di(2-ethylhexyl)sebacat (DEHS)
	Acetyltributylcitrat (ATBC)
	Di(2-ethylhexyl)terephthalat (DEHT)
	Diisononyl-cyclohexan- 1,2-dicarboxylat (DINCH)
	Tris(2-ethylhexyl)trimellitat (TEHTM)

Analytenspektrum – Weichmacher

12 Phthalat-Weichmacher: Dimethylphthalat (DMP)								
	Diethylphthalat (DEP)							
n_Nihutvlnhthalat (NRD)								
→ Verwendet in Kunststoffen wie PVC, Nitrocellulose,								
Gummi								
→ Einige Phthalate auf Kandidatenliste der ECHA für								
besorgniserregend								
→ Hormonähnliche W								
	•							
→ Alternative Weichmacher sind toxikologisch weniger								
- hadanklich								
bedenklich								
	Diisoundecylphthalat (DiUP)							
bedenklich 9 Alternativ-Weichmacher:	Diisoundecylphthalat (DiUP) Dibutyladipat (DBA)							
	Dibutyladipat (DBA)							
	Dibutyladipat (DBA) Di(2-ethylhexyl)adipat (DEHA)							
	Dibutyladipat (DBA) Di(2-ethylhexyl)adipat (DEHA) Diisononyladipat (DINA)							
	Dibutyladipat (DBA) Di(2-ethylhexyl)adipat (DEHA) Diisononyladipat (DINA) Di(2-ethylhexyl)azelat (DEHAz)							
	Dibutyladipat (DBA) Di(2-ethylhexyl)adipat (DEHA) Diisononyladipat (DINA) Di(2-ethylhexyl)azelat (DEHAz) Di(2-ethylhexyl)sebacat (DEHS)							
	Dibutyladipat (DBA) Di(2-ethylhexyl)adipat (DEHA) Diisononyladipat (DINA) Di(2-ethylhexyl)azelat (DEHAz) Di(2-ethylhexyl)sebacat (DEHS) Acetyltributylcitrat (ATBC)							




Analytenspektrum – Weichmacher

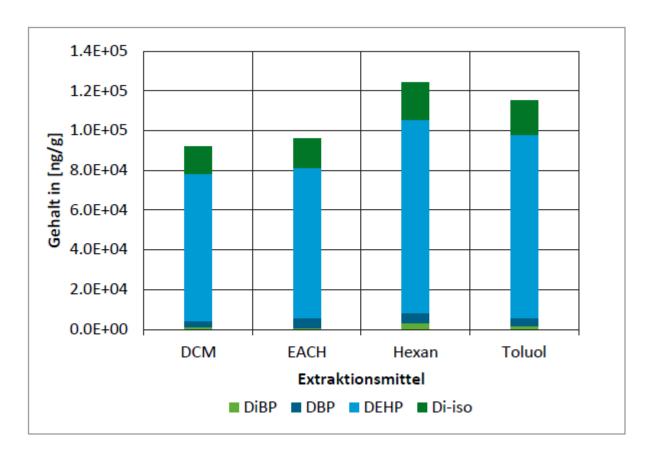
12 Phthalat-Weichmacher:	Dimethylphthalat (DMP)
	Diethylphthalat (DEP)
	n-Dibutylphthalat (DBP)
	Diisobutylphthalat (DiBP)
	Benzylbutylphthalat (BBP)
GC-MS	Dicyclohexylphthalat (DcHP)
LC-MS	Diheptyl- und Diisoheptylphthalat (DIHP)
	Di(2-ethylhexyl)phthalat (DEHP)
	Diisononylphthalat (DiNP)
	Diisodecylphthalat (DiDP)
	Di(2-propylheptyl)phthalat (DPHP)
	Diisoundecylphthalat (DiUP)
9 Alternativ-Weichmacher:	Dibutyladipat (DBA)
	Di(2-ethylhexyl)adipat (DEHA)
	Diisononyladipat (DINA)
	Di(2-ethylhexyl)azelat (DEHAz)
	Di(2-ethylhexyl)sebacat (DEHS)
	Acetyltributylcitrat (ATBC)
	Di(2-ethylhexyl)terephthalat (DEHT)
	Diisononyl-cyclohexan- 1,2-dicarboxylat (DINCH)
	Tris(2-ethylhexyl)trimellitat (TEHTM)

Analyse Isomere

Analytenspektrum – Phosphororganische Flammschutzmittel

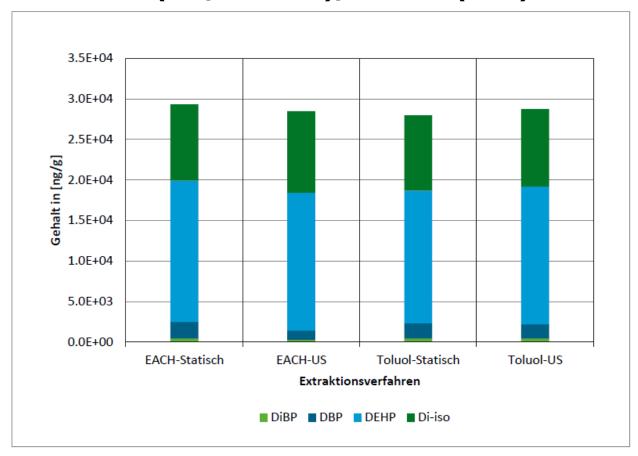
7 Phosphororganische Flammschutzmittel:	Tributylphosphat (TBP)
	Tris(2-chlorethyl)phosphat (TCEP)
	Tris(2-chlorpropyl)phosphat (TCCP)
	Triphenylphosphat (TPP)
	Tris(2-butoxyethyl)phosphat (TBEP)
	Diphenylethylhexylphosphat (DPEHP)
	Tris(2-ethylhexyl)phosphate (TEHP)

- → Alternative zu bromierten Flammschutzmitteln
- → Einsatz unter anderem in Polstermöbeln, Baumaterialien und Elektrogeräten

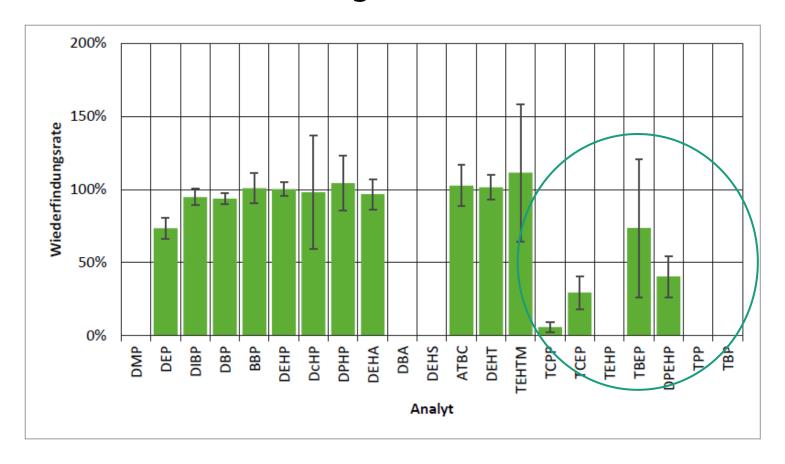

Analytenspektrum – Phosphororganische Flammschutzmittel

7 Phosphororganische Flammschutzmittel:	Tributylphosphat (TBP)
	Tris(2-chlorethyl)phosphat (TCEP)
LC-MS	Tris(2-chlorpropyl)phosphat (TCCP)
	Triphenylphosphat (TPP)
	Tris(2-butoxyethyl)phosphat (TBEP)
	Diphenylethylhexylphosphat (DPEHP)
	Tris(2-ethylhexyl)phosphate (TEHP)

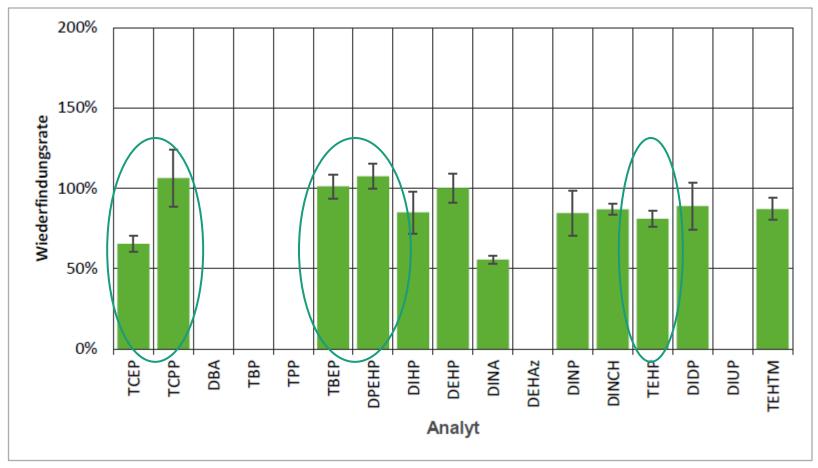
Aufbereitung Hausstäube



Vergleich verschiedener Lösemittel, ermittelt durch statische Extraktion bei RT (72h)



Vergleich der Extraktionsverfahren Statische und Ultraschallbad (US, 30 min), bei RT (36h)



Wiederfindung Phthalate und Phosphate in Hausstaub bei Toluolextraktion (Vergleich mit ASE)

Wiederfindung Phthalate und Phosphate in Hausstaub bei Acetonitrilextraktion (Vergleich mit ASE)

Probenaufbereitung – Extraktion für LC-MS und GC-MS

GC-MS:

80 mg Staub + interner Standard werden mit 15 mL Toluol 30 min im US extrahiert (Wiederfindungskorrektur der Messwerte), Filtration über PTFE-Filter → direkte Messung des Extrakts

LC-MS:

50 mg Staub werden mit 20 mL Acetonitril 30 min geschüttelt extrahiert, Filtration über Nylon-Filter→ aufgrund teilweise hoher Konzentrationen der Zielanalyten in den Messproben werden diese einmal unverdünnt und einmal 1:100 verdünnt gemessen (eingeschränkter Linearitätsbereich), daher wird der interne Standard erst zu den fertigen Messlösungen zugegeben (die Ergebnisse sind somit matrixkorrigiert, aber nicht wiederfindungskorrigiert)

- → Kein Lösemittelwechsel notwendig
- → Benötigter Konzentrationsbereich in Messlösung kann erreicht werden
- Ausnutzung der Vorteile der einzelnen Lösemittel bei der Extraktion unterschiedlicher Analyten
- → Überprüfung durch Vergleich der DEHP Werte

GC-MS Analyse

GC-MS-Geräte- und Mess-Parameter						
Gerätetyp Shimadzu QP5000						
Trägergas Helium						
Säule ZB-50 (30m x 0,25 mm x 0,25μm,Phenomenex)						
Temperaturprogramm	110 °C, 2 min isotherm, mit 4 °C/min bis auf 300 °C, 12 min isotherm					
Detektortemperatur	300 °C					
Injektionsvolumen	2 μΙ					
MS	El Ionisierung (70eV), SIM-, SCAN-Modus					

Interne Standards: deuteriertes DBP, deuteriertes DEHP, Triamlylphosphat Reproduzierbarkeit im Labor (über Kontrollprobe und Spannweite):

3 – 30 %

Methoden- und Laborbias aus Messung eines unabhängigen Standards:

1 – 15%

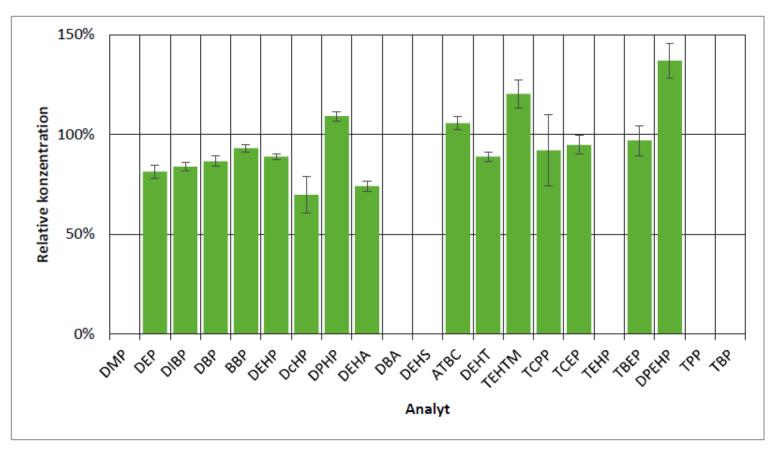
→ Erweiterte Unsicherheit 8 – 60%

LC-MS Analyse

LC-MS Geräteparameter						
Gerätetyp	Waters Quattro Ultima Platinum					
Säule	Säule 1: Kinetex F5 (1,7 μm, 100 A, 50 x 2,1 mm) Alternative Säule: Evo C18					
Injektionsvolumen	5 μl					
MS	HESI-Quelle, Positiv, MRM-Modus					

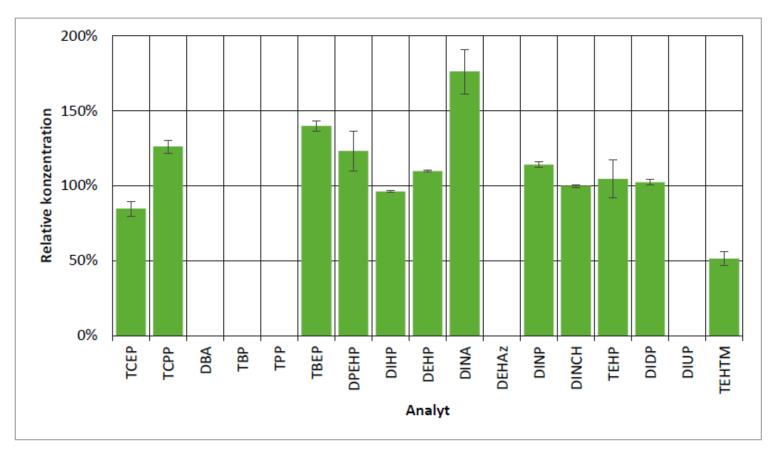
Interne Standards: deuteriertes DBP, deuteriertes DEHP, deuteriertes DIDP, Triamlylphosphat

Reproduzierbarkeit im Labor (über Kontrollprobe und Spannweite):


5 - 29 %

Methoden- und Laborbias aus Aufstockungsexperimenten:

1 - 43%

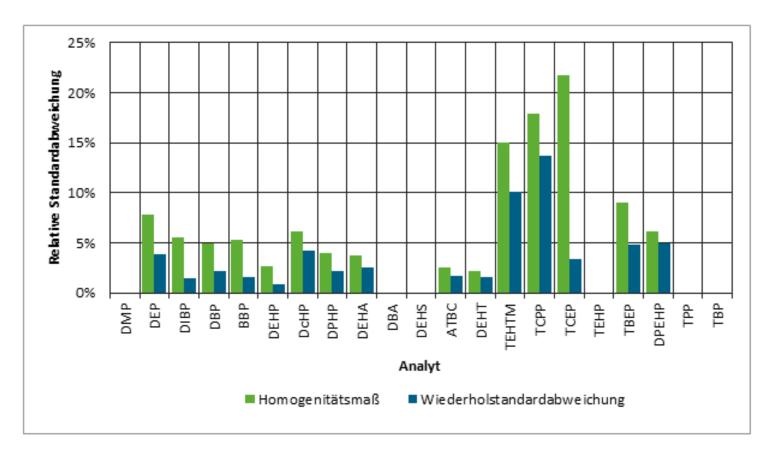

→ Erweiterte Unsicherheit 28 – 103% (103% TPP) erklärbar durch Inhomogenität der Hausstaubproben

Relative Konzentrationen bei der Aufarbeitung nach 18 Wochen analysiert mit GC-MS (Lagerversuch)

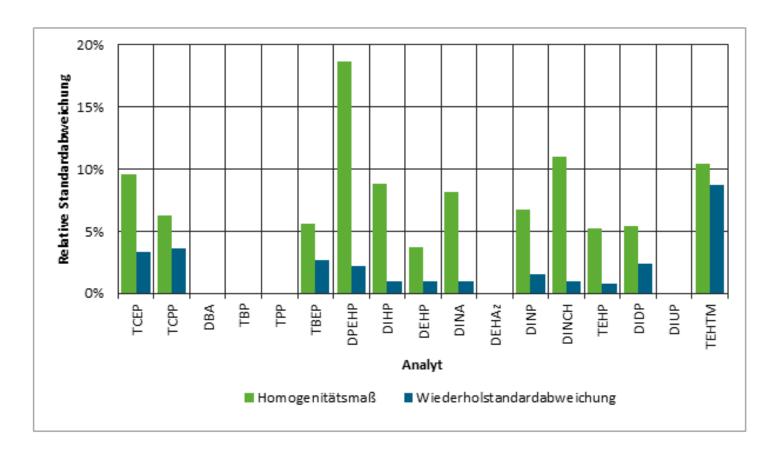
Relative Konzentrationen bei der Aufarbeitung nach 18 Wochen analysiert mit LC-MS (Lagerversuch)

Stabilität der Messlösungen für DBP

Messdatum	Messlösung	Sollwert	Istwert	Abweichung
8.9.16	#12819-X-1	10	10,856	8,6%
14.11.16	#12819-X-1	10	10,664	6,6%
15.12.16	#12819-X-1	10	10,691	6,9%
3.3.17	#12819-X-1	10	9,59	-4,1%
17.8.17	#12819-X-1	10	9,425	-5,7%
1.9.17	#12819-X-1	10	9,407	-5,9%


- Lagerung Probenextrakt 3 Monate: Konzentration der meisten Analyten blieb weitgehend gleich

Qualitätssichernde Maßnahmen


- Vergleich Messwerte DEHP GC-MS und LC-MS: über 664 Proben gute Übereinstimmung (Mittleres Ratio 103 % mit RSD von 21%)
- Kontrollkarten: Standardkontrollkarte (erlaubte Abweichung < ± 10%),
 Wiederfindungskontrollkarte → Aufstockung mit Mischstandard auf
 Staubprobe (erlaubte Abweichung GC-MS < ± 25%; LC-MS zwischen 40
 bis + 25 %, für Phosphate 50 bis + 35 %)
- Durchführung eines Ringversuchs ("Nachweis von Phthalaten und anderen Weichmachern in Hausstaub") zusammen mit der VDI-Arbeitsgruppe "Kommission Reinhaltung der Luft - Normenausschuß 134-04-04-03 Unterausschuß Bestimmung organischer Stoffe in Luft" um Maß der Richtigkeit der Messungen zu zeigen

Homogenitätsmaß und Wiederholstandardabweichung der Ringversuchsprobe nach der Messung mit GC-MS

Homogenitätsmaß und Wiederholstandardabweichung der Ringversuchsprobe nach der Messung mit LC-MS

Zur Analyse angebotene Analyten

Weichmacher auf Phthalat-Basis	Alternative Weichmacher	Phosphororganische Flamm- schutzmittel						
Dimethylphthalat (DMP)	Acetyltributylcitrat (ATBC)	Tris(2-butoxyethyl)phosphat (TBEP)						
Diethylphthalat (DEP) *	Dibutyladipat (DBA)	Tributylphosphat (TBP)						
Diisobutylphthalat (DIBP) *	Diethylhexyladipat (DEHA)	Tris(2-chlorethyl)phosphat (TCEP)						
Dibutylphthalat (DBP)	Diisononyladipat (DINA)	Tris(2-chlorpropyl)phosphat (TCPP)						
Benzylbutylphthalat (BBP) *	Diethylhexylsebacat (DEHS)	Tris(2-ethylhexyl)phosphat (TEHP)						
Diethylhexylphthalat (DEHP) *	Diethylhexylazelat (DEHAz)	Triphenylphosphat (TPP)						
Dicyclohexylphthalat (DcHP)	Tris(2-ethylhexyl)trimellitat (TEHTM)	2-Ethylhexyl-diphenylphosphat (DPEHP)						
Dipropylheptylphthalat (DPHP)	Diethylhexylterephthalat (DEHT)							
Diisononylphthalat (DINP)	1,2-Cyclohexandicarbonsäure- diisononylester (DINCH)							
Diisodecylphthalat (DIDP)								
Diisoheptylphthalat (DIHP)								
Diisoundecylphthalat (DIUP)								

Auswertung

- Teilnahme von acht Laboren (unterschiedliche Extraktions- und Messmethoden)
- Auswertung erfolgte nach Empfehlungen gemäß ISO 13528, DIN 38402-45 und IUPAC International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories
- Statistische Analyse und Beurteilung der z-scores (erfolgreich: |z|≤2,0; fragwürdig: 2,0<|z|<3,0; unzureichend: |z|≥3,0)

Ergebnisse in µg/g und z-scores

Analyt		lbutyl- at (BBP)		phthalat BP)	Diethylhexyl- phthalat (DEHP)		Diisobutylphthalat (DIBP)		Diisodecylphthalat (DIDP)			Diisonony (DII	/lphthalat NP)	
x _{pt} [μg- g]	45:	1,68	23	,49	616,36		23,93		348,30			940	940,90	
$σ_{pt}$ [μg-g]	154	4,87	16	,87	164,46		4,81		399,33			676	i,94	
Labor	Ergebnis [µg/g]	z-score	Ergebnis [µg/g]	z-score	Ergebnis [µg/g]	z-score	Ergebnis [µg/g]	z-score	Ergebnis [µg/g]	z-score		Ergebnis [µg/g]	z-score	
Α	471,62	0,1	24,56	0,1	661,05	0,3	22,32	-0,3	-	-		-	-	
В	-	-	-	-	696,62	0,5	-	-	492,29	0,4		1349,78	0,6	
С	567	0,7	28,8	0,3	734	0,7	25,4	0,3	< 60	-		720	-0,3	
D	290	-1,0	12	-0,7	430	-1,2	13	-2,3	180	-0,4		360	-0,9	
E	402,5	-0,3	11,4	-0,7	621,4	0,0	23,3	-0,1	598,5	0,6		1071,6	0,2	
F	1422,18	6,3	47,9	1,4	1939,12	8,0	44,53	4,3	1592,19	3,1		4047,41	4,6	
G	436	-0,1	-	-	615	0,0	< 188	-	236	-0,3		1229	0,4	
Н	497	0,3	22	-0,1	542	-0,5	24,7	0,2	81,5	-0,7		915	0,0	

Zusammenfassung

- Ringversuch zeigt, dass die Größenordnung der Konzentration der untersuchten Analyten mit der verwendeten Methode gut abgeschätzt werden kann
- Durch Kombination von LC- und GC-MS Analyse mit für die Methode spezifischer Probenextraktion kann ein breites Spektrum an Analyten in Hausstaub untersucht werden

Vielen Dank für Ihre Aufmerksamkeit!

Dank an: Aneta Franz, Tanja Wimmer, Gerd Wolz, Sonja Smolic, Christoph Sonnert

Dr. Maria Hoppe

Produktsicherheit und Analytik Telefon +49 8161 491-466 maria.hoppe@ivv.fraunhofer.de

www.ivv.fraunhofer.de

